
Sparse Dual of the Density Peaks Algorithm for Cluster Analysis of High-dimensional Data

Dimitris Floros* Tiancheng Liu† Nikos Pitsianis*† Xiaobai Sun†

*Department of Electrical and Computer Engineering †Department of Computer Science
Aristotle University of Thessaloniki Duke University

Thessaloniki 54124, Greece Durham, NC 27708, USA

Abstract—The density peaks (DP) algorithm for cluster anal-
ysis, introduced by Rodriguez and Laio in 2014, has proven
empirically competitive or superior in multiple aspects to other
contemporary clustering algorithms. Yet, it suffers from cer-
tain drawbacks and limitations when used for clustering high-
dimensional data. We introduce SD-DP, the sparse dual version
of DP. While following the DP principle and maintaining its
appealing properties, we establish a sparse descriptor of local
density as a robust representation. By analyzing and exploiting
the consequential properties, we are able to use sparse graph-
matrix expressions and operations throughout the clustering pro-
cess. As a result, SD-DP has provably linear-scaling computation
complexity under practical conditions. We show, with experimen-
tal results on several real-world high-dimensional datasets, that
SD-DP outperforms DP in robustness, accuracy, self-governance,
and efficiency.

Index Terms—Clustering algorithms, density peaks clustering,
nearest neighbors.

I. INTRODUCTION

The density peaks (DP) algorithm for cluster analysis,
introduced by Rodriguez and Laio in 2014 on Science mag-
azine [20], has proven empirically competitive or superior in
multiple aspects to other contemporary clustering algorithms.
DP received immediate and growing attention from many
research communities. Real-world data of research interest
have intrinsic, heterogeneous group structures and contain
noise and uncertainty. Clustering is to detect such structures in
data with intra-group similarity and inter-group dissimilarity,
using context-specific feature description and metric, governed
by certain differentiation principles or criteria. Cluster anal-
ysis has been long employed in scientific studies, such as
molecular dynamics trajectory analysis [23], classification of
astronomical events [31] and community detection in com-
plex systems [8], [18], [27]. It is increasingly recognized
as fundamental, in existing and emerging study domains, to
exploratory data analysis, unsupervised learning, knowledge
discovery and subsequent higher-level tasks. In computer vi-
sion, cluster analysis is embodied in image segmentation [25]
and/or denoising [2], content-based image retrieval [26], and
image object recognition and tracking [15], [16]. Recent years
witness many new applications: gene expression pattern analy-
sis in biology [9], [11], [13], [19], [32], thematic categorization
of text documents, author identification, or statistical analysis
of word semantics in natural language processing [6], [30], sta-
tistical categorization or identification of musical genres [22],
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(a) Parthenon image (b) Segmentation result

Fig. 1: Image segmentation by SD-DP. (a) The Parthenon image from the
Berkeley Segmentation Dataset and Benchmark [17] with 𝑁 = 481×321 =
154,401 pixels per color channel. (b) Segmentation result (3 segments) by
SD-DP (𝑘 = 71). The features are patches of 5 × 5 pixels per color (𝐷 =
5 × 5 × 3 = 75). The execution time is 3 seconds on MATLAB (excluding
𝑘NN construction time).

and recommendation systems over social or commercial net-
works [24], to name a few. The data gathered and to be
analyzed reside typically in a high dimensional feature space.
The feature dimension can be several thousand or much higher,
see for example Fig. 1, 2 and 5. High-dimensional data
challenge many existing clustering algorithms.

The DP principle promises a potentially effective and effi-
cient solution to the problem. We assess existing algorithms for
cluster analysis against a list of desirable properties, such as
capability to estimate the number of cluster, without prescrip-
tion, admission of non-spherical, non-convex cluster shapes,
permission of any similarity or distance metric, high efficiency,
and low program complexity. The 𝑘-means algorithm [14] re-
quires a prescribed cluster number and favors clusters of spher-
ical shape. Among non-spherical-shape clustering algorithms,
the mean-shift algorithm [3] is effective with low-dimensional
data, or must be preceded by a dimension reduction [10],
[21], [28], [29], which may not preserve local structures.
DBSCAN-based algorithms [1], [7] also suffer from the curse
of dimensionality, in a subtle way. They require two specified
bounds a priori on a so-called signal neighborhood: an upper
bound on the neighborhood radius and a lower bound on
the population count in the neighborhood. In comparison, the
DP algorithm is advantageous in many aspects. However, the
DP algorithm suffers from certain drawbacks and limitations,
especially when it is used for high dimensional data clustering.
Some of the issues are not necessarily attributed to the DP
principle.

In this paper, we introduce SD-DP, the sparse dual of the
DP algorithm. SD-DP follows the DP principle, inherits its
appealing properties, and more importantly, surpasses DP in
robustness, self-governance, accuracy, computation complexity



TABLE 1: Comparison in accuracy between DP1 and SD-DP on 𝑁 = 60,000 images of MNIST handwritten digits, with known true class labels. The accuracy
of each algorithm is summarized in the corresponding confusion/error matrix: (a) estimation by DP, using intensity feature vectors (𝐷 = 28×28 = 784) and
tangent distance, (b) estimation by SD-DP, using HOG2 feature descriptors (𝐷 = 144) and Euclidean distance. The far-right column contains the precision
(a.k.a. positive predictive value) and the false discovery rate. The bottom row contains the recall (a.k.a. true positive rate) and the false negative rate. The
bottom-right cell is the F1 score (a.k.a. Sørensen–Dice coefficient) for the overall accuracy.
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(a) Confusion matrix with estimation by DP (b) Confusion matrix with estimation by SD-DP

0 1 2 3 4 5 6 7 8 9

DP 0.99 0.83 0.77 0.94 0.87 0.95 0.98 0.88 0.95 0.84
SD-DP 0.98 0.98 0.95 0.95 0.96 0.97 0.98 0.96 0.94 0.93

(c) F1 scores (a.k.a. Sørensen–Dice coefficients)

and potential concurrency for parallel execution. Instead of
seeking a trade-off of accuracy for efficiency, we establish a
sparse descriptor of local density as a robust representation
first and foremost. This leads to many beautiful properties for
us to exploit. Particularly, SD-DP has proven linear complex-
ity. We are also able to use sparse graph or matrix expressions
and operations throughout the clustering process.

We present experimental results on four sets of real-world
high dimensional data. SD-DP outperforms DP in accuracy
and efficiency. Table 1 gives the comparison between DP and
SD-DP in accuracy on the dataset of MNIST handwritten
digits [12]. SD-DP outperforms DP by all three measures:
recall, precision, and F1 scores. We illustrate in section IV a
segmentation of a million-pixel image. With data of this size,
SD-DP outpaces DP by at least two orders of magnitude.

II. THE PRIMAL DP ALGORITHM

In [20], Rodriguez and Laio describe their principle assump-
tions drawn from empirical observation of cluster properties,
introduce the density peaks (DP) algorithm and provide tes-
timonial clustering results. They assume that cluster centers
are surrounded by neighbors with lower local density and that
they are at a relatively large distance from any points with a
higher local density. Here, we give only a procedural review of
the DP algorithm. We make connections to graph expressions
and operations. We also comment on potential faults.

1Modified DP algorithm by d’Errico et al. [5]
2Histogram of oriented gradients [4]

Provided with a set 𝑋 of 𝑁 discrete data points in a feature
space, a distance function 𝑑( · , · ) and a specified value of 𝑟
for neighborhood radius, the DP algorithm proceeds by the
following key steps.
Local density. Every point 𝑥𝑖 in 𝑋 is equipped with a local
density score 𝜌𝑖,

𝜌𝑖 =

{︃
|𝒩𝑟(𝑥𝑖)|, hard cutoff∑︀

𝑗 exp
(︀
−𝑑2𝑖𝑗/𝑟

2
)︀
, soft cutoff,

(1)

where 𝑑𝑖𝑗 = 𝑑(𝑥𝑖, 𝑥𝑗) and 𝒩𝑟(𝑥𝑖) = {𝑥𝑗 | 0 < 𝑑𝑖𝑗 ≤ 𝑟}
contains the neighbors of point 𝑥𝑖 within the spherical neigh-
borhood with radius 𝑟. In the hard-cutoff case, 𝜌𝑖 is the
neighborhood population count. We note that this neighbor-
search step results in a graph 𝐺𝑟(𝑋,𝐸), with 𝑋 as the node
set and 𝐸 representing the neighbor connections: 𝑒𝑖𝑗 ∈ 𝐸 if
and only if 𝑥𝑗 ∈ 𝒩𝑟(𝑥𝑖). We refer to 𝐺𝑟 as the 𝑟NN graph. In
the soft-cutoff case, the graph becomes complete with weight
exp

(︀
−𝑑2𝑖𝑗/𝑟

2
)︀

on edge 𝑒𝑖𝑗 . The costs in computation and
storage are 𝒪(𝑁2).
Decision graph and density peak selection. The DP algo-
rithm constructs a decision graph, from which one locates
local density peaks. The decision graph may be seen as a
2D embedding of all data points in 𝑋 , see for example the
scatter plot in Fig. 2b. Point 𝑥𝑖 is mapped to (𝜌𝑖, 𝛿𝑖), with 𝛿𝑖
defined as follows,

𝛿𝑖 = min
𝑗

{𝑑𝑖𝑗 | 𝜌𝑗 > 𝜌𝑖}, 𝑥𝑝 = argmin
𝑗

{𝑑𝑖𝑗 | 𝜌𝑗 > 𝜌𝑖}. (2)



(a) (b) (c) (d)

Fig. 2: Differences between DP (top row) and SD-DP (bottom row) in two counterpart components, shown in columns (a) and (b), and in rendered results,
shown in columns (c) and (d), on dataset PBMCs-8k [33]. The dataset has 𝑁 = 8, 000 cells described by 𝐷 = 21, 322 gene expression elements.
Column (a): Local density histograms, with 50 equispaced bins for each. The local density 𝜌 with DP is calculated by the soft-cutoff version of (2) with
𝑟 = 97.75, related to 𝑝 = 2% via (3). The DP histogram (top) indicates that a large number of data points have near-zero density, i,e., have near-empty
neighborhoods. The dual local density 𝜌* with SD-DP is calculated by (4) with 𝑘 = 35. The relative frequencies with SD-DP (bottom) are well spread
across the bins. Column (b): In each scatter plot, the 𝑦-axis for the ascending distance is in log-scale. The decision graph at the top is central to DP for
density peak selection. Three DP density peaks (in red) are chosen by the heuristic that peaks have the largest values of 𝜌𝛿. The bottom scatter plot in the
𝜌*-𝛿* plane confirms the proven separation between local maxima and the rest by the red curve 𝛿* = 1/𝜌*, see Theorem 1. This property gives SD-DP the
self-governance and linear complexity in determining the location of local density maxima/peaks. The plot is a by-product for making the comparison, playing
no part in decision making. Column (c): The cluster analysis results rendered by DP (top) and SD-DP (bottom) are shown in cell-cell neighbor-interaction
matrices. The cells are re-ordered according to the cluster configurations. Column (d): The cluster analysis results are shown in the data array – the rows
correspond to the cells; the columns to the gene expression elements. The rows are ordered by the cluster configurations, white horizontal lines are added to
highlight cluster boundaries. The columns are ordered in non-descending column sums, only the leading 500 columns are shown. Conclusion: The results
by SD-DP (cluster revision not shown) suggest 4 large sub-populations of the cells and 2 smaller ones. The data array at the bottom of column (d) offers a
visual confirmation of the intra-group similarity and inter-group dissimilarity.

Here, 𝑥𝑝, the parent node of 𝑥𝑖, is the closest point among
all with higher local density, and 𝛿𝑖 is the ascending distance
from 𝑥𝑖 to its parental node. We refer to (2) as the ascending
rule. The density peaks are selected from the scatter plot of
the decision graph by a heuristic: only points of high 𝛿 and
high 𝜌 are the cluster centers [20]. Additional cues may be
used, manually or semi-automatically.
Label propagation. Every density peak is seen as a cluster
center, it holds a unique cluster label. Every non-peak point
gets a label via its ascending path (2) to one of the density
peaks.
Uncertainty assessment. Finally, the DP algorithm grades the
points with the same label into two status tiers: core points
and halo points. The halo points are de-labeled, for lack of
significant affinity. We omit the detail.

A few remarks are in order. (i) The construction of the
decision graph is essential to density peak selection. The com-
putational cost for constructing the decision graph is 𝒪(𝑁2),
quadratic with 𝑁 . (ii) It is not implausible for 𝑥𝑖 to face
more than one parental candidates. The parental selection of 𝑥𝑖

affects the label assignment of 𝑥𝑖 and that of its descendants.
(iii) There is also uncertainty in numerical calculation of the
density and ascending distance. We address, in addition, the

problem of determining an appropriate value of radius 𝑟 for
uniform-sized neighborhoods in Section III-A.

III. SPARSE DUAL OF THE DP ALGORITHM

We are mainly concerned with cluster analysis of high
dimensional data. We introduce SD-DP, the sparse dual of the
DP algorithm, which stems from our understanding of high-
dimensional data and the limiting factors of the DP algorithm.

A. Fundamental facts about high-dimensional data

Consider data in a 𝐷-dimensional feature space. We assume
that every element of the feature descriptor is relevant to
discriminative data analysis, in the sense that the element
ranges over at least two distinct values. The feature space
can thereby house 2𝐷 or more different feature vectors. For
convenience, we say the feature space is deep if 𝐷 > 100. It is
important to respect the fundamental facts about data in a deep
feature space. We recognize the following: (i) For dataset 𝑋
in a deep feature space, the assertion 𝑁 = |𝑋| ≪ 2𝐷 not
only holds true today but can also be maintained for many
years to come.3 In other words, the data are sparsely and non-

3The largest database as of 2018 is reportedly at the World Data Center for
Climate (WDCC), with 220 terabytes of web data and 6 petabytes of extra
data.



uniformly scattered in a deep feature space. (ii) With a large
and fixed 𝐷, the volume of a spherical neighborhood is highly
sensitive to a small change in the radius. When the relative
change in the radius is 𝜀, the relative change in the volume
is (1 + 𝜀)𝐷 − 1 > 𝐷𝜀. (iii) If we fix the radius and let 𝐷
increase, then the volume of a spherical neighborhood with
radius 𝑟 becomes decreasing when 𝐷 passes certain value and
vanishing as 𝐷 → ∞.

By the fundamental facts above, one may become aware of
the problem with the DP algorithm in selecting the parameter
𝑟 for uniform-sized neighborhoods. Consider the dataset of
single-cell gene expressions for about 8, 000 peripheral blood
mononuclear cells (PBMCs-8k) [33]. The feature dimension
is high, 𝐷 = 21,322, see Fig. 2. The cells are surely sparse
and non-uniform in the deep feature space. A small radius
will result in empty neighborhoods at many cell points; a
large radius may make many neighborhoods equally crowded.
Furthermore, the transition from small neighborhoods to large
ones, or in between, is difficult to control. If we increase or
decrease the DP parameter 𝑟 by only 1%, then the neigh-
borhood volume expands or shrinks relatively by 2 orders of
magnitude. An appropriate value of 𝑟 is therefore elusive for
discriminative data analysis in a deep feature space.

Some attempts in mitigating the problem resort to dimension
reduction, which may distort the local densities. Rodriguez and
Laio suggested to set the radius at 𝑟𝑝,

𝑟𝑝 = min
𝑟

{︀
𝑟 |

∑︀
𝑖|𝒩𝑟(𝑥𝑖)

⃒⃒
≥ 𝑝𝑁2

}︀
, (3)

with 𝑝 = 1% or 2% so that the average neighbor population
is 𝑝𝑁 . In Fig. 2, the density histogram with the radius set to
𝑟𝑝 indicates many near-empty neighborhoods. The heuristic
parameter setting (3) is at odds with the fundamental facts
about data in a deep feature space. We take a radical departure
to resolve the problem.

B. Duality in local density description

The local density of point 𝑥 may be expressed in two
alternative ways. One may first specify the radius or range 𝑟
of a neighborhood, then count the number of points within the
neighborhood, as in the DP algorithm. Alternatively, one first
specifies the number 𝑘 of nearest neighbors, then measures
the radius of the neighborhood that contains all 𝑘 neighbors
and has the 𝑘-th neighbor on the boundary. The local density
is higher if the distance to the 𝑘-th neighbor is smaller. With
high-dimensional data, however, the first choice encounters se-
rious issues as discussed earlier, while the alternative remains
effective. The number of nearest neighbors is within grasp, in
interpretation as well as in parameter tuning, regardless of the
dimension.

Based on this profound difference, we define the dual local
density at every point 𝑥𝑖 as follows,

𝜌*𝑖 = 1/max
𝑗

{𝑑𝑖𝑗 | 𝑥𝑗 ∈ 𝒩𝑘(𝑥𝑖)}, (4)

where 𝒩𝑘(𝑥𝑖) is the set of 𝑘 nearest neighbors of 𝑥𝑖, and
𝑘 > 0 is a modest constant, not varying with 𝑁 . The nearest

(a) SD-DP 𝜌*-𝛿* graph (b) Confusion matrix image

Fig. 3: Local maxima for and confusion matrix with the initial cluster
configuration of SD-DP (𝑘 = 48) on 𝑁 = 60,000 images of MNIST
handwritten digits with HOG features (𝐷 = 144). (a) 𝜌*-𝛿* graph, 𝛿* is
in log scale. The red curve 𝛿* = 1/𝜌* depicts the proven separation of
the 53 local maxima (in red) from the rest of the points, by Theorem 1.
(b) The confusion matrix between the initial clusters (rows) and the true
classes (columns). Color intensity relates to the number of elements per block,
brighter blocks contain more elements. The size of each row or column block
is the number of data points in the corresponding initial cluster or true class.
As observed, each initial cluster is associated with only one true class.

neighbor search results in a 𝑘NN graph, which is the sparse
counterpart of the 𝑟NN graph with DP. There exist efficient
algorithms for 𝑘NN search.

Local density peaks are at local density maxima. Point 𝑥𝑖 is
a local maximum if its local density is higher than that of any
other point in its neighborhood. We denote by LocMax[𝑘] the
set of local maximum points, specific to 𝑘 nearest neighbors.
The local maximum points, or simply local maxima, can
be determined locally, autonomously, and simultaneously at
all neighborhoods. There are only 𝑘 comparisons in local
density at each neighborhood. The total computation cost for
identifying the local maxima and setting them apart from the
rest is 𝒪(𝑁).

C. Label propagation

Every density peak is a local density maximum and holds
a unique label. Each non-peak point 𝑥𝑖 is connected to a peak
via an ascending path and gets the same label the peak holds.
The ascending path for each non-peak point is unfolded step
by step by the ascending rule:

𝛿*𝑖 = min
𝑗

{𝑑𝑖𝑗 | 𝜌*𝑗 > 𝜌*𝑖 }, 𝑥𝑝 = argmin
𝑗

{𝑑𝑖𝑗 | 𝜌*𝑗 > 𝜌*𝑖 }. (5)

Here, 𝑥𝑝 is the parental point and 𝛿*𝑖 is the ascending distance
from 𝑥𝑖 to 𝑥𝑝. We state the following properties:

Theorem 1. Let 𝑘 > 0 be the specified number of nearest
neighbors for each and every point. For any 𝑥𝑖 /∈ LocMax[k],

1) 𝜌*𝑖 𝛿
*
𝑖 < 1; and

2) its parental node 𝑥𝑝 of (5) is in the neighborhood 𝒩𝑘(𝑥𝑖).

For part 1 of Theorem 1, it is straightforward to verify
that 𝜌*𝑖 𝛿

*
𝑖 ≥ 1, or equivalently, 𝛿*𝑖 ≥ 1/𝜌*𝑖 , if and only if

𝑥𝑖 is a local maximum. The condition sets local maxima
apart from the rest, without resorting to the 𝜌*-𝛿* graph for
decision making. The graph is a by-product. We use it for
numerical confirmation and graphical illustration of the simple



(a) (b)

Fig. 4: Matrix view of autonomous cluster revision (see Section III-D) by SD-
DP on 𝑁 = 60,000 images of MNIST handwritten digits with HOG features
(𝐷 = 144). (a) 𝑘NN matrix G𝑘 (𝑘 = 48) of (6) in block partition according
to the initial cluster configuration (53 local maxima). (b) The same matrix in
block partition according to the revised cluster configuration (10 clusters).

characterization, see the bottom scatter plot in column (b) of
Fig. 2 and Fig. 3a, where the local maxima are indeed above
the red curve, 𝛿* = 1/𝜌*; the rest, below.

By part 2 of Theorem 1, the search for all parental nodes
is local, autonomous and can be carried out simultaneously at
all neighborhoods. The total complexity for parental linking
is linear, 𝒪(𝑁). By recursion argument, the ascending path
from a non-peak point to a local density maximum is entirely
on the 𝑘NN graph.

Corollary 2. The ascending paths from all non-local-
maximum points constitute a forest of non-overlapping trees,
each ascending tree is rooted at a local maximum. The
ascending trees partition and span the 𝑘NN graph.

We can use the ascending forest as our initial cluster
configuration. The points on the same ascending tree belong
to the same cluster, with the same label as that of the local
maximum. The total computation cost for constructing the
initial cluster configuration is 𝒪(𝑁).

We also introduce the DP counterpart of Theorem 1. We
define the local maximum set LocMax[r] in a similar way.

Theorem 3. Let 𝑟 be the radius of the neighborhood of each
point. For any point 𝑥𝑖 /∈ LocMax[r],

1) 𝛿𝑖 < 𝑟, and
2) the parental node is within 𝒩𝑟(𝑥𝑖).

In theory, by Theorem 3, we may convert the peak selection
in DP into autonomous with the horizontal separation line
𝛿 = 𝑟. In practice, however, there may be a great number
of degenerate local maxima with empty neighborhoods, even
with 𝑟 chosen by (3), see Fig. 2a for example.

D. Revision of cluster configuration

The next original contribution we made in SD-DP is on
cluster configuration revision. We start with the initial clus-
ter configuration of the ascending trees rooted at the local
maxima, see Section III-C. The initial cluster configuration is
susceptible to uncertainty in multiple sources such as noise
in data, numerical sensitivity in density, distance calculation,

and random tie-breaking in parental node selection, which
affects the ascending paths of the descendants. It is imperative
to assess the current cluster configuration and make revision
when necessary and plausible. We describe briefly three key
components of our revision scheme: quantitative evaluation
of a cluster configuration, governing criteria for revision and
revision algorithm.

In evaluating a cluster configuration, we make use of the
weighted 𝑘NN matrix G𝑘 defined as follows:

G𝑘(𝑖, 𝑗) = B𝑘(𝑖, 𝑗) exp
(︀
−(𝑑𝑖𝑗𝜌𝑖/𝜎)

2
)︀
, (6)

where B𝑘 is the binary-valued adjacency matrix for the 𝑘NN
graph, 𝑑𝑖𝑗𝜌𝑖 is the relative distance between 𝑥𝑖 and its neigh-
bor 𝑥𝑗 against the distance to the 𝑘-th nearest neighbor of
𝑥𝑖, and 𝜎 > 0 is a chosen scaling unit. We coalesce the
pairwise interactions in G𝑘 according to any particular cluster
configuration.

Assume that the current configuration {𝒞𝑝}, 1 ≤ 𝑝 ≤ 𝐿, has
𝐿 clusters. We denote by G𝑘({𝒞𝑝}) the matrix permuted and
blocked according to the configuration. The diagonal block
G𝑘(𝒞𝑝, 𝒞𝑝) represents interactions within cluster 𝒞𝑝. The off-
diagonal block G𝑘(𝒞𝑝, 𝒞𝑞) contains inter-cluster interactions
between two clusters 𝒞𝑝 and 𝒞𝑞 . Within each diagonal block,
any sub-cluster structure can be maintained in the same
fashion, recursively.

To govern a revision process, we formulate the clustering
problem as an optimization over all feasible cluster configu-
rations,

{𝒞ℓ} = argmin
{𝒞𝑝}

𝑓({𝒞𝑝}) =
∑︁
𝑝

|𝒞𝑝|2

subject to

ℎ(G𝑘(𝒞𝑝, {𝒞𝑞} − 𝒞𝑝)) < 𝜏 ·ℎ(G𝑘(𝒞𝑝, 𝒞𝑝)).

(7)

The objective function 𝑓 measures the total area of the
diagonal blocks. The function ℎ, in the inequality constraints,
aggregates the interaction strength over a given (sub)matrix.
The optimization promotes a non-overlapping cluster config-
uration with smaller and denser diagonal blocks among other
feasible configurations. By the feasible condition, the inter-
cluster interactions are relatively weaker than the intra-cluster
interactions, 𝜏 > 0 is a small threshold on the relative ratio.

Governed by (7), a revision algorithm can be carried out
with two basic operations: split and merge. The split oper-
ation assumes, and builds upon, sub-cluster structure. In the
initial configuration, a cluster is an ascending tree, its sub-
clusters are the sub-trees. The hierarchical intra-structure can
be maintained in revision. In Fig. 6 we illustrate the revision
operations via evaluation of the 𝑘NN matrix with two clusters,
𝒞𝑝 and 𝒞𝑞 , in the current configuration. The sub-cluster 𝒞𝑢 in
𝒞𝑝 has weak intra-interactions with the rest, see submatrices
G𝑘(𝒞𝑢, 𝒞𝑝−𝒞𝑢) and G𝑘(𝒞𝑝−𝒞𝑢, 𝒞𝑢). Splitting 𝒞𝑢 from 𝒞𝑝
will decrease the value of the objective function 𝑓 while
maintaining the feasibility conditions. When cluster merges
are necessary to reduce inter-cluster interactions, we tailor



(a) Santorini HD image4 (b) Segmentation result

Fig. 5: Illustrative segmentation of a high-definition (HD) image by SD-DP. (a) An HD color image of Santorini with 𝑁 = 1280× 800 = 1,024,000 pixels
per color channel. (b) Segmentation result (30 segments) by SD-DP (𝑘 = 71). The features are patches of 9× 9 pixels per color (𝐷 = 9× 9× 3 = 243).
The execution time is 15 seconds on MATLAB (excluding 𝑘NN construction time).

Cu
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Fig. 6: Illustration of split and merge on a matrix G𝑘 with two clusters,
𝒞𝑝 and 𝒞𝑞 . Interactions ending in 𝒞𝑝 and 𝒞𝑞 are colored blue and brown,
respectively. Left: Initial cluster configuration. Right: Cluster configuration
after split and merge. Sub-cluster 𝒞𝑢 of 𝒞𝑝 is automatically detected, split
from 𝒞𝑝 and merged into 𝒞𝑞 .

and modify the current configuration with splits for measured
merges. In Fig. 6, sub-cluster 𝒞𝑢 has a strong interaction with
𝒞𝑞 , by evaluation of G𝑘(𝒞𝑢, 𝒞𝑞) and G𝑘(𝒞𝑞, 𝒞𝑢). If oblivious
to the substructure, one would merge the entire 𝒞𝑝 with 𝒞𝑞 ,
at the expense of increasing 𝑓 . Instead, we split 𝒞𝑢 from 𝒞𝑝
and merge it with 𝒞𝑞 . This membership change of 𝒞𝑢 not only
decreases the ℎ value but also makes the 𝑓 value lower. A
merge tailored by split renders a much better result than the
inordinate merge. One may locate splits at various substructure
levels and organize merges in different fashions. For the exper-
iments reported here, we used a simple two-phase procedure
for autonomous revision. Phase one uses the substructures at
a coarse level for splits and merges, phase two makes further
revision at a finer level. Supplementary material and additional
information are available at http://sddp.cs.duke.edu.

IV. CONCLUDING REMARKS

With SD-DP, the sparse dual version of the DP algorithm,
we have made significant advances in non-parametric, unsu-
pervised classification analysis of big and high-dimensional

4https://blog.ryanair.com/wp-content/uploads/2015/08/santorini123.jpg

data. SD-DP embodies several intellectual merits. The ro-
bustness is the first and foremost. It stems from the dual
local density, which respects the fundamental facts about
high-dimensional data. The initial configuration, following the
DP principle, is entirely unsupervised, proven theoretically
efficient with linear complexity and shown empirically faster
than DP by orders of magnitude in execution time. We make
cluster revision at multiple substructure levels, using merges
tailored by splits. The revision is governed by the optimization
model (7), which allows us to leverage collective information
on relative strength between intra- and inter-cluster interac-
tions. All SD-DP operations can be cast as familiar sparse
graph/matrix operations.

SD-DP promises to surmount multiple serious barriers at
once in permissible data type, size and dimension, algorithmic
robustness, estimation accuracy, and computational efficiency.
Still in its infancy, SD-DP is to be applied to, and assessed
by, more and diverse datasets, and likely get improved upon
further investigation.
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